Lesson no.38 (Serial port programming)
Introduction

Serial port is a way of communication among two devices just like the parallel port. The basic difference is that whole bytes are sent from one place to another in case of parallel port while the bits are sent one by one on the serial port in a specially formatted fashion. The serial port connection is a 9pin DB-9 connector with pins assigned as shown below.

[image: image1]
We have made a wire that connects signal ground of the two connectors, the TD of one to the RD of the other and the RD of one to the TD of the other. This three wire connection is sufficient for full duplex serial communication. The data on the serial port is sent in a standard format called RS232 communication. The data starts with a 1 bit called the start bit, then five to eight data bits, an optional parity bit, and one to two 0 bits called stop bits. The number of data bits, parity bits, and the number of stop bits have to be configured at both ends. Also the duration of a bit must be precisely known at both ends called the baud rate of the communication.

The BIOS INT 14 provides serial port services. We will use a mix of BIOS services and direct port access for our example. A major limitation in using BIOS is that it does not allows interrupt driven data transfer, i.e. we are interrupted whenever a byte is ready to be read or a byte can be transferred since the previous transmission has completed. To achieve this we have to resort to direct port access. Important BIOS services regarding the serial port are discussed below.

INT 14 - SERIAL - INITIALIZE PORT

AH = 00h

AL = port parameters

DX = port number (00h-03h)

Return:
AH = line status

AL = modem status

Every bit of line status conveys different information. From most significant to least significant, the meanings are timeout, transmitter shift register empty, transmitter holding register empty, break detect, receiver ready, overrun, parity error, and framing error. Modem status is not used in direct serial communication. The port parameters in AL consist of the baud rate, parity scheme, number of stop bits, and number of data bits. The description of various bits is as under.

[image: image2]
INT 14 - SERIAL - WRITE CHARACTER TO PORT

AH = 01h

AL = character to write

DX = port number (00h-03h)

Return:

AH bit 7 = error flag
AH bits 6-0 = port status
INT 14 - SERIAL - READ CHARACTER FROM PORT

AH = 02h

DX = port number (00h-03h)

Return:
AH = line status

AL = received character if AH bit 7 clear

INT 14 - SERIAL - GET PORT STATUS

AH = 03h

DX = port number (00h-03h)

Return:
AH = line status

AL = modem status

Serial port is also accessible via I/O ports. COM1 is accessible via ports 3F8-3FF while COM2 is accessible via 2F8-2FF. The first register at 3F8 (or 2F8 for the other port) is the transmitter holding register if written to and the receiver buffer register if read from. Other registers of our interest include 3F9 whose bit 0 must be set to enable received data available interrupt and bit 1 must be set to enable transmitter holding register empty interrupt. Bit 0 of 3FA is set if an interrupt is pending and its bits 1-3 identify the cause of the interrupt. The three bit causes are as follows.

110
(16550, 82510) timeout interrupt pending

101
(82510) timer interrupt
100
(82510) transmit machine
011
receiver line status interrupt. priority=highest

010
received data available register interrupt. priority=second

001
transmitter holding register empty interrupt. priority=third

000
modem status interrupt. priority=fourth

The register at 3FB is line control register while the one at 3FD is line status register. The line status register has the same bits as returned in line status by the get port status BIOS interrupt however the most significant bit is reserved in this case instead of signaling a timeout. The register at 3FC is the modem control register. Bit 3 of this register must be set to enable interrupt generation by the serial port.

1.1. Serial Communication

We give an example where two computers are connected using a serial cable made just as described above. The program is to be run on both computers. After that whatever is typed on one computer appears on the screen of the other.

	
	Example 14.1

	001

002
003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094
095

096

097

098

099

100

101

102
	; a program using serial port to transfer data back and forth

[org 0x0100]

 jmp start

screenpos: dw 0 ; where to display next character

; subroutine to clear the screen

clrscr: push es

 push ax

 push cx

 push di

 mov ax, 0xb800

 mov es, ax ; point es to video base

 xor di, di ; point di to top left column

 mov ax, 0x0720 ; space char in normal attribute

 mov cx, 2000 ; number of screen locations

 cld ; auto increment mode

 rep stosw ; clear the whole screen

 pop di

 pop cx

 pop ax

 pop es

 ret

serial: push ax

 push bx

 push dx

 push es

 mov dx, 0x3FA ; interrupt identification register

 in al, dx ; read register

 and al, 0x0F ; leave lowerniblle only

 cmp al, 4 ; is receiver data available

 jne skipall ; no, leave interrupt handler

 mov dx, 0x3F8 ; data register

 in al, dx ; read character

 mov dx, 0xB800

 mov es, dx ; point es to video memory

 mov bx, [cs:screenpos] ; get current screen position

 mov [es:bx], al ; write character on screen

 add word [cs:screenpos], 2 ; update screen position

 cmp word [cs:screenpos], 4000 ; is the screen full

 jne skipall ; no, leave interrupt handler

 call clrscr ; clear the screen
 mov word [cs:screenpos], 0 ; reset screen position

skipall: mov al, 0x20

 out 0x20, al ; end of interrupt

 pop es

 pop dx

 pop bx

 pop ax

 iret

start: call clrscr ; clear the screen

 mov ah, 0 ; initialize port service

 mov al, 0xE3 ; line settings = 9600, 8, N, 1

 xor dx, dx ; port = COM1

 int 0x14 ; BIOS serial port services

 xor ax, ax

 mov es, ax ; point es to IVT base

 mov word [es:0x0C*4], serial

 mov [es:0x0C*4+2], cs ; hook serial port interrupt

 mov dx, 0x3FC ; modem control register

 in al, dx ; read register

 or al, 8 ; enable bit 3 (OUT2)

 out dx, al ; write back to register

 mov dx, 0x3F9 ; interrupt enable register

 in al, dx ; read register

 or al, 1 ; receiver data interrupt enable

 out dx, al ; write back to register

 in al, 0x21 ; read interrupt mask register

 and al, 0xEF ; enable IRQ 4

 out 0x21, al ; write back to register

main: mov ah, 0 ; read key service

 int 0x16 ; BIOS keybaord services

 push ax ; save key for later use

retest: mov ah, 3 ; get line status

 xor dx, dx ; port = COM1

 int 0x14 ; BIOS keyboard services

 and ah, 32 ; trasmitter holding register empty

 jz retest ; no, test again

 pop ax ; load saved key

 mov dx, 0x3F8 ; data port

 out dx, al ; send on serial port

 jmp main

1 – Carrier Detect (CD)

2 – Received Data (RD)

3 – Transmitted Data (TD)

4 – Data Terminal Ready (DTR)

5 – Signal Ground

6 – Data Set Ready (DSR)

7 – Request to Send (RTS)

8 – Clear to Send (CTS)

9 – Ring Indicator (RI)

7

6

5

4

3

2

1

0

baud rate

000-110

001-150

010-300

011-600

100-1200

101-2400

110-4800

111-9600

parity

00-N

10-N

01-O

11-E

data bits

00-5

01-6

10-7

11-8

stop bits

0-1

1-2

